US009256549B2

a2 United States Patent 10) Patent No.: US 9,256,549 B2
Kimmel et al. 45) Date of Patent: Feb. 9, 2016
(54) SET-ASSOCIATIVE HASH TABLE 7,249,150 Bl 7/2007 Watanabe et al.
ORGANIZATION FOR EFFICIENT STORAGE 33%822 gg . ;gggg Earich et al. GOGE 17/3033
,370, oeb i
ég;)TlEIIE/[TRIEVAL OF DATA IN A STORAGE 7,373,345 B2* 5/2008 Carpentier GOGF 17/30097
7,644,087 B2 1/2010 Barkai et al.
(71) Applicant: NetApp, Inc., Sunnyvale, CA (US) 7,680,837 B2 3;2010 Yamato |
7,949,693 Bl 5/2011 M t al.
(72) Inventors: Jeffrey S. Kimmel, Chapel Hill, NC 7,996,636 Bl 8/2011 przli(:slhee:l al.
(US); T. Byron Rakitzis, Seattle, WA 8,082,390 Bl 12/2011 Fanetal.
(as) 8,099,396 Bl 1/2012 Novick et al.
(73) Assignee: NetApp, Inc., Sunnyvale, CA (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent is extended or adjusted under 35
U.S.C. 154(b) by 113 days. EP 1970821 AL 9/2008
(21) Appl. No.: 14/158,608
(22) Filed: Jan. 17, 2014 OTHER PUBLICATIONS
(65) Prior Publication Data Debnath et al. “ChunkStash: Speeding up Inline Storage Deduplica-
US 2015/0205727 Al Tul. 23. 2015 tion using Flash Memory.” Jun. 2010. USENIX. USENIX ATC *10.*
ul.
1) Int.Cl ’ (Continued)
GO6F 17/30 (2006.01)
gzgﬁ ;50/20 888288 Primary Examiner — Nathan Sadler
(52) US.CL (74) Attorney, Agent, or Firm — Cesari and McKenna, LLP
CPC GO6F 12/1018 (2013.01); GOGF 3/0608
(2013.01); GOGF 3/0611 (2013.01); GOGF
3/0619 (2013.01); GOGF 3/0638 (2013.01); ©7) ABSTRACT
GO6F 3/0665 (2013.01); GO6F 3/0688 In one embodiment, an extent key reconstruction technique is
17/30 %;1(32811 g; ()Gl?(sgosggﬁfg /3(20(;;37(()213’1 3G(0)?)U provided for use with a set of hash tables embodying meta-
GO6F 2003/0695 (2013.01); GOGF 22]2./262’ data. The metadata includes an extent key associated with a
(2013.01); G061*; 22}2/657 (2013.01) storage location on storage devices for write data of one or
(58) Field of Classificati 0;1 S (; arch ’ more write requests organized into an extent. Each hash table
None has a plurality of entries, and each entry includes a plurality of
See application file for complete search history. slots. A first field of the extent key is recreated implicitly from
an entry in a first address space portion of a hash table. A
(56) References Cited second field of the extent key is stored in the slot. A third field

U.S. PATENT DOCUMENTS

5,511,190 A 4/1996 Sharma et al.
5,937,425 A 8/1999 Ban
6,434,662 B1* 8/2002 Greeneetal. GO6F 17/30949

707/E17.035

of the extent key is stored in the slot. A fourth field of the
extent key is recreated implicitly from the hash table of the set
of hash tables.

20 Claims, 10 Drawing Sheets

UPPER

902

\ ... [EXTRAKEYBITS | [__K2 «
INDEX .

830b 4|

™ +++ | EXTRAKEYBITS

K1

LOWER
904

HASHTABLE 850

840b

TABLE
SELECTOR

810
(=650)

HASH TABLE
SELECTOR
504

¥
EXTRAKEY
k2 | ki
BITS
802 806 | &8

US 9,256,549 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

8,205,065 B2 6/2012 Matze
8,261,085 Bl 9/2012 Fernandez Guitierrez
8,341,457 B2 12/2012 Spry et al.
8,417,987 Bl 4/2013 Goel et al.
8,452,929 B2 5/2013 Bennett
8,495,417 B2 7/2013 Jernigan, IV et al.
8,539,008 B2* 9/2013 Faithccceoevrnrenn. GOG6F 3/064
707/822
8,560,879 B1 10/2013 Goel
8,595,595 B1 11/2013 Grcanac et al.
8,600,949 B2 12/2013 Periyagaram et al.
8,645,664 Bl 2/2014 Colgrove et al.
8,751,763 Bl 6/2014 Ramarao
8,806,160 B2 8/2014 Colgrove et al.
8,874,842 B1* 10/2014 Kimmel GO6F 3/0611
711/100
8,880,787 B1* 11/2014 Kimmel GOGF 11/1464
711/103
2002/0073068 Al 6/2002 Guha
2003/0120869 Al 6/2003 Leeet al.
2004/0052254 Al 3/2004 Hooper
2005/0144514 Al 6/2005 Ulrich et al.
2007/0061572 Al 3/2007 Imai et al.
2007/0143359 Al 6/2007 Uppala
2008/0065639 Al* 3/2008 Choudhary GOG6F 7/02
2008/0126695 Al 5/2008 Berg
2009/0097654 Al* 4/2009 Blake GO6F 17/30949
380/277
2009/0271412 Al 10/2009 Lacapra et al.
2009/0313503 Al 12/2009 Atluri et al.
2010/0042790 Al 2/2010 Mondal et al.
2010/0088296 Al 4/2010 Periyagaram et al.
2011/0035548 Al 2/2011 Kimmel et al.
2011/0060876 Al 3/2011 Liu
2011/0191389 Al 8/2011 Okamoto
2011/0213928 Al 9/2011 Grube et al.
2011/0314346 Al 12/2011 Vasetal.
2012/0143877 Al 6/2012 Kumar et al.
2012/0246129 Al 9/2012 Rothschild et al.
2012/0290788 Al 11/2012 Klemm et al.
2013/0018854 Al 1/2013 Condict
2013/0086006 Al 4/2013 Colgrove et al.
2013/0138862 Al 5/2013 Motwani et al.
2013/0227195 Al 8/2013 Beaverson et al.
2013/0227201 Al 8/2013 Talagala et al.
2013/0238832 Al 9/2013 Dronamraju et al.
2013/0238932 Al 9/2013 Resch
2013/0262805 Al 10/2013 Zheng et al.
2013/0268497 Al 10/2013 Baldwin et al.
2013/0275656 Al 10/2013 Talagala et al.
2013/0346700 A1 12/2013 Tomlinson et al.
2013/0346720 Al 12/2013 Colgrove et al.
2013/0346810 Al 12/2013 Kimmel et al.
2015/0095346 Al* 4/2015 Kimmel GO6F 17/3033
707/747
2015/0120754 Al* 4/2015 Chasec...... GO6F 17/3033
707/747

OTHER PUBLICATIONS

Fan et al. “MemC3: Compact and Concurrent MemCache with
Dumber Caching and Smarter Hashing.” Apr. 2013. USENIX. NSDI
’13. pp. 371-384.*

Cornwall, Michael, “Anatomy of a Solid-state Drive,” ACM Queue—
Networks, vol. 10, No. 10, Oct. 2012, pp. 1-7.

“Cuckoo hashing,” Wikipedia, http://en.wikipedia.org/wiki/
Cuckoo_ hash, Apr. 2013, pp. 1-5.

Culik, K., et al.,, “Dense Multiway Trees,” ACM Transactions on
Database Systems, vol. 6, Issue 3, Sep. 1981, pp. 486-512.
Debnath, Biplob, et al., “FlashStore: High Throughput Persistent
Key-Value Store,” Proceedings of the VLDB Endowment VLDB
Endowment, vol. 3, Issue 1-2, Sep. 2010, pp. 1414-1425.

Gal, Eran et al., “Algorithms and Data Structures for Flash Memo-
ries,” ACM Computing Surveys, vol. 37, No. 2, Jun. 2005, pp. 138-
163.

Gray, Jim et al., “Flash Disk Opportunity for Server Applications,”
Queue—Enterprise Flash Storage, vol. 6, Issue 4, Jul.-Aug. 2008, pp.
18-23.

Handy, Jim, “SSSI Tech Notes: How Controllers Maximize SSD
Life,” SNIA, Jan. 2013, pp. 1-20.

Leventhal, Adam H. “A File System All Its Own,” Communications
of the ACM Queue, vol. 56, No. 5, May 2013, pp. 64-67.

Lim, H. et al., “SILT: A Memory-Efficient, High-Performance Key-
Value Store,” Proceedings of the 23™ ACM Symposium on Operating
Systems Principles (SOSP’11), Oct. 23-26, 2011, pp. 1-13.
Moshayedi, Mark, et al., “Enterprise SSDs,” ACM Queue—Enter-
prise Flash Storage, vol. 6 No. 4, Jul.-Aug. 2008, pp. 32-39.

Pagh, Rasmus, et al., “Cuckoo Hashing,” Elsevier Science, Dec. 8,
2003, pp. 1-27.

Pagh, Rasmus, “Cuckoo Hashing for Undergraduates,” IT University
of Copenhagen, Mar. 27, 2006, pp. 1-6.

Rosenblum, Mendel, et al., “The Design and Implementation of a
Log-Structured File System,” Proceedings of the 13”* ACM Sympo-
sium on Operating Systems Principles, Jul. 24, 1991, pp. 1-15.
Rosenblum, Mendel, et al., “The LFS Storage Manager,” Summer
’90 USENIX Technical Conference, Anaheim, California, Jun. 1990,
pp. 1-16.

Rosenblum, Mendel, “The Design and Implementation of a Log-
structured File System,” UC Berkeley, Thesis, 1992, pp. 1-101.
Seltzer, Margo, et al., “An Implementation of a Log Structured File
System for UNIX,” Winter USENIX, San Diego, CA, Jan. 25-29,
1993, pp. 1-18.

Seltzer, Margo, et al., “File System Performance and Transaction
Support,” UC Berkeley, Thesis, 1992, pp. 1-131.

Smith, Kent, “Garbage Collection,” SandForce, Flash Memory Sum-
mit, Santa Clara, CA, Aug. 2011, pp. 1-9.

Twigg, Andy, et al., “Stratified B-trees and Versioned Dictionaries,”
Proceedings of the 3rd USENIX Conference on Hot Topics in Stor-
age and File Systems, vol. 11, 2011, pp. 1-5.

Wu, Po-Liang, et al., “A File-System-Aware FTL Design for Flash-
Memory Storage Systems,” Design, Automation & Test in Europe
Conference & Exhibition, IEEE, 2009, pp. 1-6.

PCT Notification of Transmittal of the International Search Report
and the Written Opinion of the International Searching Authority, or
the Declaration, International Searching Authority, International
Application No. PCT/EP2014/071446, mailed Apr. 1, 2015, 14

pages.

* cited by examiner

US 9,256,549 B2

Sheet 1 of 10

Feb. 9, 2016

U.S. Patent

00l

051
AVEY
JOVHOLS

00¢
300N

0cl
1SOH

L 'Ol

ovl
LOINNOOHILNI
J9YHOLS

0l
¥3LsSn10

LOINNOOHAINI

05}
AVSUY
JOVHOLS

00¢
400N

0zl
LSOH

US 9,256,549 B2

Sheet 2 of 10

Feb. 9, 2016

U.S. Patent

¢ 9l4
051
\
d ass | ass
(s)3aon SS
REIER 74
NO¥4/0L Ovh~ —O0vl Tm:moz
| — WOY4/01 \\uj
e G8zZ — _ p—
052 0z SOOTAN 057 - A
ERVAREIL — 0cC
LOANNOOYAINI | | 350l 082 S0 | wardvay | |[23LsnO
NEITR WVEAN WHOMIIN | | —m——]
_ _ | _
r
0/
1D3NNODYILNI INIALSAS
a4
= . TINY3YM WILSAS
4 —— ONILYY3dO
N ; 00¢
¢z MOVLS O/]
A JOVHOLS
00¢ 022 AYOWAW

U.S. Patent Feb. 9, 2016 Sheet 3 of 10 US 9,256,549 B2
/300
) | ADMINISTRATION
)] 310
&
M
E PROTOCOL LAYER CLUSTER DATABASE
S > B 3_29 %_4_'
S
A _______
G 3354,
: PERSISTENCE [‘.
et LAYER < s 1
N 330 [P 3804
G = ! S i
L 3455 1 \
K - i 1!
VOLUME LAYER [L (} !
E = = 340 < T e e N) \
] N
R — : N \\
N | 355+ N \
E EXTENT STORE : ! N \
L LAYER < !:r ! N \\
350 : L T\\ N \
— i ' \\\ \\ \]
| NVLOGS | N
RAID LAYER \ 285 ol
< - §6_0_ \\~_———_—-’ ‘ | =
NVRAM 280 | 111
1y
370 | STORA3GG% LAYER) | i |
209 O o
T | EXTENTSTORELOG 1. Y/ ||
y CHECKPOINTA{'1 | (METADATA) | ;}
390 | [TCITIIIIIIIIIIIIII .
OPERATING SYSTEM I VOLUME LAYER LOG i*‘/ {
KERNEL ! (METADATA) ' |
2_24_1 b o o e e o e e e - }

FIG. 3

~

STORAGE ARRAY 150

[
\

U.S. Patent Feb. 9, 2016 Sheet 4 of 10 US 9,256,549 B2

400
= WRITE REQUEST 410 .
NIy
27 |\(_LUNID,LBA,LENGTH 413) (C WRITEDATA 414)
“ ¥
B [DECODE 420]
Sl [LUNID, OFFSET LENGTH 422
o5 Y Y
o [VOLUME MAPPING 430] —o— v
wd VOLUME ID, OFFSET, LENGTH [~432 | (WRITE DATA }' 510
D) t Y
o L =
R e [BUCKET MAPPING 700]
e =
' DENSETREE | [)
| DENsETREE DENSETREE 1
o | 1 OFFSEIRANGE OO A NGE & | [5FFSET LenoT
I I e s e EXTENT KEY 810 ff--1---
i
wsy ! : !
=LA DENSE TREE \ 1~ | VOLUME METADATA !
S R e 77 ! ENTRY |
=] - i 446 :
| VOLUME 445 : I |
_______________________________ 1 |
([EXTENT METADATA SELECTION 800 Jo— | HASH VALUE 850 |11
EXTENT ST?;OE{Q-STANCE [HASH TABLE INDEX 8_29_]‘J i
1
& f tiniieiiiint——— Y EXTENT 610§ 1
B { .+ [LOCATION'530, KEY 810 i !
5%% e O !
! 1
= i — HASH TABLE 850a
|
\ | HASHTABLE 8500 (NENORY)I;' [DEDUPLICATION 452]
N — J [COMPRESSION 454]
S _ SEGMENT
_o ﬁ——ﬁﬁ——ﬁL“%Of::—’J“;i‘l
= i EXTENT 610 € 3] FULL STRIPE
384 b — L WRITE 462
a e e e s -
[
& | sspzs0a| [sspzem| |- - -Issoze_(ml
{ ™~466 FIG. 4

U.S. Patent Feb. 9, 2016 Sheet 5 of 10 US 9,256,549 B2

- READ REQUEST 510
%@ (CLONTD, LBA LENGTH 513) 500
o [DECODE 4207 READ RESPONSE 514
é%ﬁ‘ LUN ID, OFFSET, LENGTH (" READDATA 512)
v U
o | [VOLUME MAPPING 430] \522 I
" il | READ
TS 580
355 | VOLUME ID, OFFSET, LENGTH |-534 —
S = VOLUME METADATA ENTRY |
(oEIIIIIIIIT S St 3 446
- DENSE TREE !
| oPENSRREE OFFSETRANGE || |OFFSETLENGTH
o : 440 440a ! EXTENT KEY 810
= | | J
L) f DENSE TREE Y DENSE TREE\ ! ?
2 | 4449 L. | PAGE CACHE
> { — i 448
1
! VOLUME 445 ! Y

------------------------------- EXTENT KEY 810
([BUCKET MAPPING 700 J«——— | (HASH VALUE 850)

EXTENT STORE INSTANCE EXTENT METADATA
TN o SELECTION 800

L)
o
So | .{ TOCATION 530, KEY 810 <—*‘{HASH TABLE INDEX 820 J<—
f——>—'—0ﬁ ,’ ____________________ 1 [—'—
5357| 1
& | [T]-] HASHTABLE 8502 | EXTENT 610 |
j i I Y 2
\| |HASHTABLE 850n |(MEMORY),
| \—— J [DECOMPRESSION 456]
__________________________ SEGMENT
f !
=] i £ EXTENT 610 (- —\»[EXTENT
Sgi RS =L /| READ " 468
l
= ! |SSD 260a| SSD260b | | - |88D260n|
' *“466

S N —— FIG. 5

U.S. Patent

Feb. 9, 2016

Sheet 6 of 10
600
EXTENT
610

HASH
FUNCTION
620

TRIM
640

HASH VALUE
650

FIG. 6

US 9,256,549 B2

U.S. Patent Feb. 9, 2016 Sheet 7 of 10 US 9,256,549 B2

HASH VALUE
650

!

REMAINDER
COMPUTATION
710

|

BUCKET (NUMBER)
725

BUCKET MAPPING TABLE
730

—»| EXTENT STORE INSTANCE

65520

FIG. 7

U.S. Patent Feb. 9, 2016 Sheet 8 of 10 US 9,256,549 B2
800
(8-bit) (8bit) (16-bit) (16-bit)
HASHTABLE | EXTRAKEY | o ‘1
650~ SELECTOR BITS a5 | a8
(48-bit) 804 802 = —
Y L
: HASH TABLE INDEX
: SLOT 8302 +- K2 820
- 1
: K1 :
) INDEX ;
|
e _ 840a i
]
I
|
SLOT 830b e« K1 ;
|
i e e e e e e 2o e 1
R K2
: INDEX
HASH TABLE 850a 840b
HASHTABLE 850n
\ ~ J
HASH TABLE SET
860
FIG. 8A
sLOT
LOCATION
il 830
'/ """"""""""""""" N
' | OFFSET | LENGTH |REFCOUNT | DIRTY | EXTRAKEYBITS |K1ORK2
| e | s 834 836 802 |8080r 808
[}
TTobiy (8biy (7-biy (1-bit) (8-bit) (16-bit)

FIG. 8B

U.S. Patent Feb. 9, 2016 Sheet 9 of 10 US 9,256,549 B2

830a
(‘\
N .. [EXTRAKEYBITS K2 K1
UPPER f : INDEX |
902 ;)
: 840a
- - ______________________'_"_"_";';_"_'-;,________:“_': _ """"""
830b —|—_|- - —
.+« [EXTRAKEY BITS |i[K1
LOWER
904) : : K2§
| | HASHTABLE 850 840
TABLE '
SELECTOR!
1 ¥ ¥ ;
HASHTABLE | EXTRAKEY
810 - 'SELECTOR BITS 8K026 8K018
(=650) 804 802 = | =

FIG. 9

U.S. Patent Feb. 9, 2016 Sheet 10 of 10 US 9,256,549 B2

HASH
VALUE = I s | a0 }:_—:
650 806 | 808

HASH TABLE
INDEX
8202

....................

HASH

840a COLLISION
COMPUTATION
1002

CANDIDATE
EXTENT
KEY-"

811 ®z

HASH TABLE ~ 850a

CANDIDATE
HASH TABLE INDEX

HASH TABLE 850n 830
\ y EXTENT KEY :
~ 810 B T ’
HASH TABLE SET —
860

US 9,256,549 B2

1
SET-ASSOCIATIVE HASH TABLE
ORGANIZATION FOR EFFICIENT STORAGE
AND RETRIEVAL OF DATA IN A STORAGE
SYSTEM

BACKGROUND

1. Technical Field

The present disclosure relates to storage systems and, more
specifically, to a metadata organization for efficient storage
and retrieval of data in a storage system.

2. Background Information

A storage system typically includes one or more storage
devices, such as disks embodied as hard disk drives (HDDs)
or solid state drives (SSDs), into which information may be
entered, and from which information may be obtained, as
desired. The storage system may implement a high-level
module, such as a file system, to logically organize the infor-
mation stored on the disks as storage objects, such as files or
logical units (LUNs). Each storage container may be imple-
mented as a set of data structures, such as data blocks that
store data for the storage containers and metadata blocks that
describe the data of the storage containers. For example, the
metadata may describe, e.g., identity, storage locations on the
disks for the data.

In a traditional file system, large amounts of metadata
updates (changes) may be incurred when processing input/
output (I/O) requests, such as read or write requests. That is,
a relatively large amount of metadata may be written in pro-
portion to an amount of data (to be written) for the associated
1/0 request(s), i.e., high write amplification. For example, in
the case of a write request having write data that changes data
(user data) of a LUN, processing of the request at the storage
system may require many accesses to the disks to acquire and
update one or more indirect blocks (metadata) associated
with the changed user data. Updating of the indirect blocks
may result in large amounts of metadata changes, thereby
causing high write amplification. In the case ofa read request,
substantial latency may be incurred if access to metadata on
disk is required before accessing requested user data on disk.
For instance, if an average of two disk accesses per read
request is required, the resulting read amplification reduces
performance by half. In addition, if the I/O request requires
opening of a directory to access file system metadata, many
disk accesses may be required, thereby causing high read
amplification. By reducing the amount of metadata needed to
process the /O requests and maintaining a substantial amount
of that needed metadata in a memory, e.g., RAM, of the
storage system, the amount of disk accesses (read and write)
may be reduced, thus reducing both read and write amplifi-
cation.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and further advantages of the embodiments
herein may be better understood by referring to the following
description in conjunction with the accompanying drawings
in which like reference numerals indicate identically or func-
tionally similar elements, of which:

FIG. 1 is a block diagram of a plurality of nodes intercon-
nected as a cluster;

FIG. 2 is a block diagram of a node;

FIG. 3 is a block diagram of a storage input/output (1/O)
stack of the node;

FIG. 4 illustrates a write path of the storage [/O stack;

FIG. 5 illustrates a read path of the storage I/O stack;

FIG. 6 is a block diagram of an extent hashing technique;

10

15

20

25

30

40

45

50

55

60

65

2

FIG. 7 is a block diagram of a bucket mapping technique;

FIG. 8a is a block diagram of a hash table entry selection
technique;

FIG. 85 is a block diagram of a hash table slot;

FIG. 9 is a block diagram of an extent key reconstruction
technique; and

FIG. 10 is a block diagram of a hash collision technique.

DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

The embodiments described herein are directed to the use
otf'hashing in a file system metadata arrangement that reduces
an amount of metadata stored in a memory of a node in a
cluster and that reduces the amount of metadata needed to
process an input/output (I/O) request at the node. Illustra-
tively, the embodiments are directed to cuckoo hashing and,
in particular, to a manner in which cuckoo hashing may be
modified and applied to construct the file system metadata
arrangement. In an embodiment, the file system metadata
arrangement may be illustratively configured as a key-value
extent store embodied as a data structure, e.g., a cuckoo hash
table, wherein a value, such as a hash table index, may be
configured as an index and applied to the cuckoo hash table to
obtain a key, such as an extent key, configured to reference a
location of an extent on one or more storage devices, such as
solid state drives (SSDs). Thus, the cuckoo hash table embod-
ies extent metadata that describes the extent and, as such, may
be organized to associate a location on SSD with an index,
i.e., a value associated with the hash table index identifies the
location on SSD. Advantageously, the file system metadata
arrangement achieves a high degree of metadata compact-
ness, thus reducing read and write amplification as well as
memory requirements.

Description
Storage Cluster

FIG. 1 is a block diagram of a plurality of nodes 200
interconnected as a cluster 100 and configured to provide
storage service relating to the organization of information on
storage devices. The nodes 200 may be interconnected by a
cluster interconnect fabric 110 and include functional com-
ponents that cooperate to provide a distributed storage archi-
tecture of the cluster 100, which may be deployed in a storage
area network (SAN). As described herein, the components of
each node 200 include hardware and software functionality
that enable the node to connect to one or more hosts 120 over
a computer network 130, as well as to one or more storage
arrays 150 of storage devices over a storage interconnect 140,
to thereby render the storage service in accordance with the
distributed storage architecture.

Each host 120 may be embodied as a general-purpose
computer configured to interact with any node 200 in accor-
dance with a client/server model of information delivery. That
is, the client (host) may request the services of the node, and
the node may return the results of the services requested by
the host, by exchanging packets over the network 130. The
host may issue packets including file-based access protocols,
such as the Network File System (NFS) protocol over the
Transmission Control Protocol/Internet Protocol (TCP/IP),
when accessing information on the node in the form of stor-
age containers such as files and directories. However, in an
embodiment, the host 120 illustratively issues packets includ-
ing block-based access protocols, such as the Small Com-
puter Systems Interface (SCSI) protocol encapsulated over

US 9,256,549 B2

3

TCP (iSCSI) and SCSI encapsulated over FC (FCP), when
accessing information in the form of storage containers such
as logical units (LUNs). Notably, any of the nodes 200 may
service a request directed to a storage container stored on the
cluster 100.

FIG. 2 is a block diagram of a node 200 that is illustratively
embodied as a storage system having one or more central
processing units (CPUs) 210 coupled to a memory 220 via a
memory bus 215. The CPU 210 is also coupled to a network
adapter 230, storage controllers 240, a cluster interconnect
interface 250 and a non-volatile random access memory
(NVRAM 280) via a system interconnect 270. The network
adapter 230 may include one or more ports adapted to couple
the node 200 to the host(s) 120 over computer network 130,
which may include point-to-point links, wide area networks,
virtual private networks implemented over a public network
(Internet) or a local area network. The network adapter 230
thus includes the mechanical, electrical and signaling cir-
cuitry needed to connect the node to the network 130, which
illustratively embodies an Ethernet or Fibre Channel (FC)
network.

The memory 220 may include memory locations that are
addressable by the CPU 210 for storing software programs
and data structures associated with the embodiments
described herein. The CPU 210 may;, in turn, include process-
ing elements and/or logic circuitry configured to execute the
software programs, such as a storage input/output (I/O) stack
300, and manipulate the data structures. [llustratively, the
storage 1/O stack 300 may be implemented as a set of user
mode processes that may be decomposed into a plurality of
threads. An operating system kernel 224, portions of which
are typically resident in memory 220 (in-core) and executed
by the processing elements (i.e., CPU 210), functionally
organizes the node by, inter alia, invoking operations in sup-
port of the storage service implemented by the node and, in
particular, the storage 1/O stack 300. A suitable operating
system kernel 224 may include a general-purpose operating
system, such as the UNIX® series or Microsoft Windows®
series of operating systems, or an operating system with
configurable functionality such as microkernels and embed-
ded kernels. However, in an embodiment described herein,
the operating system kernel is illustratively the Linux® oper-
ating system. It will be apparent to those skilled in the art that
other processing and memory means, including various com-
puter readable media, may be used to store and execute pro-
gram instructions pertaining to the embodiments herein.

Each storage controller 240 cooperates with the storage [/O
stack 300 executing on the node 200 to access information
requested by the host 120. The information is preferably
stored on storage devices such as solid state drives (SSDs)
260, illustratively embodied as flash storage devices, of stor-
age array 150. In an embodiment, the flash storage devices
may be based on NAND flash components, e.g., single-layer-
cell (SLC) flash, multi-layer-cell (MLC) flash or triple-layer-
cell (TLC) flash, although it will be understood to those
skilled in the art that other non-volatile, solid-state electronic
devices (e.g., drives based on storage class memory compo-
nents) may be advantageously used with the embodiments
described herein. Accordingly, the storage devices may or
may not be block-oriented (i.e., accessed as blocks). The
storage controller 240 includes one or more ports having /0
interface circuitry that couples to the SSDs 260 over the
storage interconnect 140, illustratively embodied as a serial
attached SCSI (SAS) topology. Alternatively, other point-to-
point /O interconnect arrangements, such as a conventional
serial ATA (SATA) topology or a PCI topology, may be used.
The system interconnect 270 may also couple the node 200 to

10

15

20

25

30

35

40

45

50

55

60

65

4

alocal service storage device 248, such as an SSD, configured
to locally store cluster-related configuration information,
e.g., as cluster database (DB) 244, which may be replicated to
the other nodes 200 in the cluster 100.

The cluster interconnect interface 250 may include one or
more ports adapted to couple the node 200 to the other node(s)
of'the cluster 100. In an embodiment, Ethernet may be used as
the clustering protocol and interconnect fabric media,
although it will be apparent to those skilled in the art that other
types of protocols and interconnects, such as Infiniband, may
be utilized within the embodiments described herein. The
NVRAM 280 may include a back-up battery or other built-in
last-state retention capability (e.g., non-volatile semiconduc-
tor memory, such as storage class memory) that is capable of
maintaining data in light of a failure to the node and cluster
environment. [llustratively, a portion of the NVRAM 280
may be configured as one or more non-volatile log (NVLogs
285) configured to temporarily record (“log”) I/O requests,
such as write requests, received from the host 120.

Storage 1/O Stack

FIG. 3 is a block diagram of the storage I/O stack 300 that
may be advantageously used with one or more embodiments
described herein. The storage 1/O stack 300 includes a plu-
rality of software modules or layers that cooperate with other
functional components of the nodes 200 to provide the dis-
tributed storage architecture of the cluster 100. In an embodi-
ment, the distributed storage architecture presents an abstrac-
tion of a single storage container, i.e., all of the storage arrays
150 of the nodes 200 for the entire cluster 100 organized as
one large pool of storage. In other words, the architecture
consolidates storage, i.e., the SSDs 260 of the arrays 150,
throughout the cluster (retrievable via cluster-wide keys) to
enable storage of the LUNs. Both storage capacity and per-
formance may then be subsequently scaled by adding nodes
200 to the cluster 100.

Iustratively, the storage I/O stack 300 includes an admin-
istration layer 310, a protocol layer 320, a persistence layer
330, a volume layer 340, an extent store layer 350, a Redun-
dant Array of Independent Disks (RAID) storage layer 360, a
storage layer 365 and a NVRAM (storing NVLogs) “layer”
interconnected with a messaging kernel 370. The messaging
kernel 370 may provide a message-based (or event-based)
scheduling model (e.g., asynchronous scheduling) that
employs messages as fundamental units of work exchanged
(i.e., passed) among the layers. Suitable message-passing
mechanisms provided by the messaging kernel to transfer
information between the layers of the storage 1/O stack 300
may include, e.g., for intra-node communication: i) messages
that execute on a pool of threads, ii) messages that execute on
a single thread progressing as an operation through the stor-
age /O stack, iii) messages using an Inter Process Commu-
nication (IPC) mechanism and, e.g., for inter-node commu-
nication: messages using a Remote Procedure Call (RPC)
mechanism in accordance with a function shipping imple-
mentation. Alternatively, the /O stack may be implemented
using a thread-based or stack-based execution model. In one
or more embodiments, the messaging kernel 370 allocates
processing resources from the operating system kernel 224 to
execute the messages. Each storage 1/O stack layer may be
implemented as one or more instances (i.e., processes)
executing one or more threads (e.g., in kernel or user space)
that process the messages passed between the layers such that
the messages provide synchronization for blocking and non-
blocking operation of the layers.

US 9,256,549 B2

5

In an embodiment, the protocol layer 320 may communi-
cate with the host 120 over the network 130 by exchanging
discrete frames or packets configured as 1/O requests accord-
ing to pre-defined protocols, such as iSCSI and FCP. An /O
request, e.g., a read or write request, may be directed toa LUN
and may include I/O parameters such as, inter alia, a LUN
identifier (ID), a logical block address (LBA) of the LUN, a
length (i.e., amount of data) and, in the case of a write request,
write data. The protocol layer 320 receives the /O request and
forwards it to the persistence layer 330, which records the
request into persistent write-back cache 380, illustratively
embodied as a log whose contents can be replaced randomly,
e.g., under some random access replacement policy rather
than only in serial fashion, and returns an acknowledgement
to the host 120 via the protocol layer 320. In an embodiment,
only I/O requests that modify the LUN (e.g., write requests)
are logged. Notably, the I/O request may be logged at the node
receiving the 1/O request, or in an alternative embodiment in
accordance with the function shipping implementation, the
1/0 request may be logged at another node.

Tlustratively, dedicated logs may be maintained by the
various layers of the storage 1/O stack 300. For example, a
dedicated log 335 may be maintained by the persistence layer
330 to record the I/O parameters of an 1/O request as equiva-
lent internal, i.e., storage 1/O stack, parameters, e.g., volume
1D, offset, and length. In the case of a write request, the
persistence layer 330 may also cooperate with the NVRAM
280 to implement the write-back cache 380 configured to
store the write data associated with the write request. In an
embodiment, the write-back cache may be structured as a log.
Notably, the write data for the write request may be physically
stored in the cache 380 such that the log 335 contains the
reference to the associated write data. It will be understood to
persons skilled in the art that other variations of data struc-
tures may be used to store or maintain the write data in
NVRAM including data structures with no logs. In an
embodiment, a copy of the write-back cache may be also
maintained in the memory 220 to facilitate direct memory
access to the storage controllers. In other embodiments, cach-
ing may be performed at the host 120 or at a receiving node in
accordance with a protocol that maintains coherency between
the data stored at the cache and the cluster.

In an embodiment, the administration layer 310 may
apportion the LUN into multiple volumes, each of which may
be partitioned into multiple regions (e.g., allotted as disjoint
block address ranges), with each region having one or more
segments stored as multiple stripes on the array 150. A plu-
rality of volumes distributed among the nodes 200 may thus
service a single LUN, i.e., each volume within the LUN
services a different LBA range (i.e., offset and length, here-
inafter offset range) or set of ranges within the LUN. Accord-
ingly, the protocol layer 320 may implement a volume map-
ping technique to identify a volume to which the I/O request
is directed (i.e., the volume servicing the offset range indi-
cated by the parameters of the /O request). [llustratively, the
cluster database 244 may be configured to maintain one or
more associations (e.g., key-value pairs) for each of the mul-
tiple volumes, e.g., an association between the LUN ID and a
volume, as well as an association between the volume and a
node ID for a node managing the volume. The administration
layer 310 may also cooperate with the database 244 to create
(or delete) one or more volumes associated with the LUN
(e.g., creating a volume ID/LUN key-value pair in the data-
base 244). Using the LUN ID and LBA (or LBA range), the
volume mapping technique may provide a volume ID (e.g.,
using appropriate associations in the cluster database 244)
that identifies the volume and node servicing the volume

10

15

20

25

30

40

45

50

55

60

65

6

destined for the request, as well as translate the LBA (or LBA
range) into an offset and length within the volume. Specifi-
cally, the volume ID is used to determine a volume layer
instance that manages volume metadata associated with the
LBA or LBA range. As noted, the protocol layer 320 may pass
the /O request (i.e., volume ID, offset and length) to the
persistence layer 330, which may use the function shipping
(e.g., inter-node) implementation to forward the 1/O request
to the appropriate volume layer instance executing on a node
in the cluster based on the volume ID.

In an embodiment, the volume layer 340 may manage the
volume metadata by, e.g., maintaining states of host-visible
containers, such as ranges [LUNs, and performing data man-
agement functions, such as creation of snapshots and clones,
for the LUNs in cooperation with the administration layer
310. The volume metadata is illustratively embodied as in-
core mappings from LUN addresses (i.e., offsets) to durable
extent keys, which are unique cluster-wide IDs associated
with SSD storage locations for extents within an extent key
space of the cluster-wide storage container. That is, an extent
key may be used to retrieve the data of the extent at an SSD
storage location associated with the extent key. Alternatively,
there may be multiple storage containers in the cluster
wherein each container has its own extent key space, e.g.,
where the administration layer 310 provides distribution of
extents among the storage containers. As described further
herein, an extent is a variable length block of data that pro-
vides a unit of storage on the SSDs and that need not be
aligned on any specific boundary, i.e., it may be byte aligned.
Accordingly, an extent may be an aggregation of write data
from a plurality of write requests to maintain such alignment.
Tlustratively, the volume layer 340 may record the forwarded
request (e.g., information or parameters characterizing the
request), as well as changes to the volume metadata, in dedi-
cated log 345 maintained by the volume layer 340. Subse-
quently, the contents of the volume layer log 345 may be
written to the storage array 150 in accordance with a check-
point (e.g., synchronization) operation that stores in-core
metadata on the array 150. That is, the checkpoint operation
(checkpoint) ensures that a consistent state of metadata, as
processed in-core, is committed to (i.e., stored on) the storage
array 150; whereas retirement of log entries ensures that the
entries accumulated in the volume layer log 345 synchronize
with the metadata checkpoints committed to the storage array
150 by, e.g., retiring those accumulated log entries that are
prior to the checkpoint. In one or more embodiments, the
checkpoint and retirement of log entries may be data driven,
periodic or both.

In an embodiment, the extent store layer 350 is responsible
for storing extents prior to storage on the SSDs 260 (i.e., on
the storage array 150) and for providing the extent keys to the
volume layer 340 (e.g., in response to a forwarded write
request). The extent store layer 350 is also responsible for
retrieving data (e.g., an existing extent) using an extent key
(e.g., in response to a forwarded read request). The extent
store layer 350 may be responsible for performing de-dupli-
cation and compression on the extents prior to storage. The
extent store layer 350 may maintain in-core mappings (e.g.,
embodied as hash tables) of extent keys to SSD storage loca-
tions (e.g., offset on an SSD 260 of array 150). The extent
store layer 350 may also maintain a dedicated log 355 of
entries that accumulate requested “put” and “delete” opera-
tions (i.e., write requests and delete requests for extents
issued from other layers to the extent store layer 350), where
these operations change the in-core mappings (i.c., hash table
entries). Subsequently, the in-core mappings and contents of
the extent store layer log 355 may be written to the storage

US 9,256,549 B2

7

array 150 in accordance with a “fuzzy” checkpoint 390 (i.e.,
checkpoint with incremental changes recorded in one or more
log files) in which selected in-core mappings (less than the
total) are committed to the array 150 at various intervals (e.g.,
driven by an amount of change to the in-core mappings, size
thresholds of log 355, or periodically). Notably, the accumu-
lated entries in log 355 may be retired once all in-core map-
pings have been committed to include the changes recorded in
those entries.

In an embodiment, the RAID layer 360 may organize the
SSDs 260 within the storage array 150 as one or more RAID
groups (e.g., sets of SSDs) that enhance the reliability and
integrity of extent storage on the array by writing data
“stripes” having redundant information, i.e., appropriate par-
ity information with respect to the striped data, across a given
number of SSDs 260 of each RAID group. The RAID layer
360 may also store a number of stripes (e.g., stripes of suffi-
cient depth), e.g., in accordance with a plurality of contiguous
range write operations, so as to reduce data relocation (i.e.,
internal flash block management) that may occur within the
SSDs as a result of the operations. In an embodiment, the
storage layer 365 implements storage /O drivers that may
communicate directly with hardware (e.g., the storage con-
trollers and cluster interface) cooperating with the operating
system kernel 224, such as a Linux virtual function 1/O
(VFIO) driver.

Write Path

FIG. 4 illustrates an I/O (e.g., write) path 400 of the storage
1/0 stack 300 for processing an /O request, e.g., a SCSI write
request 410. The write request 410 may be issued by host 120
and directed to a LUN stored on the storage array 150 of the
cluster 100. Ilustratively, the protocol layer 320 receives and
processes the write request by decoding 420 (e.g., parsing and
extracting) fields of the request, e.g., LUN ID, LBA and
length (shown at 413), as well as write data 414. The protocol
layer 320 may use the results 422 from decoding 420 for a
volume mapping technique 430 (described above) that trans-
lates the LUN ID and LBA range (i.e., equivalent offset and
length) of the write request to an appropriate volume layer
instance, i.e., volume ID (volume 445), in the cluster 100 that
is responsible for managing volume metadata for the LBA
range. In an alternative embodiment, the persistence layer
330 may implement the above described volume mapping
technique 430. The protocol layer then passes the results 432,
e.g., volume ID, offset, length (as well as write data), to the
persistence layer 330, which records the request in the per-
sistence layer log 335 and returns an acknowledgement to the
host 120 via the protocol layer 320. As described herein, the
persistence layer 330 may aggregate and organize write data
414 from one or more write requests into a new extent 610 and
perform a hash computation, i.e., a hash function, on the new
extent to generate a hash value 650 in accordance with an
extent hashing technique 600.

The persistence layer 330 may then pass the write request
with aggregated write data including, e.g., the volume 1D,
offset and length, as parameters 434 to the appropriate vol-
ume layer instance. In an embodiment, message passing of
the parameters 434 (received by the persistence layer) may be
redirected to anther node via the function shipping mecha-
nism, e.g., RPC, for inter-node communication. Alterna-
tively, message passing of the parameters 434 may be via the
IPC mechanism, e.g., message threads, for intra-node com-
munication.

In one or more embodiments, a bucket mapping technique
700 is provided that translates the hash value 650 to an

10

15

20

25

30

35

40

45

50

55

60

65

8

instance 720 of an appropriate extent store layer (i.e., extent
store instance 720) that is responsible for storing the new
extent 610. Note, the bucket mapping technique may be
implemented in any layer of the storage /O stack above the
extent store layer. In an embodiment, for example, the bucket
mapping technique may be implemented in the persistence
layer 330, the volume layer 340, or a layer that manages
cluster-wide information, such as a cluster layer (not shown).
Accordingly, the persistence layer 330, the volume layer 340,
or the cluster layer may contain computer executable instruc-
tions executed by the CPU 210 to perform operations that
implement the bucket mapping technique 700 described
herein. The persistence layer 330 may then pass the hash
value 650 and the new extent 610 to the appropriate volume
layer instance and onto the appropriate extent store instance
via an extent store put operation. The extent hashing tech-
nique 600 may embody an approximately uniform hash func-
tion to ensure that any random extent to be written may have
an approximately equal chance of falling into any extent store
instance 720, i.e., hash buckets are distributed across extent
store instances of the cluster 100 based on available
resources. As a result, the bucket mapping technique 700
provides load-balancing of write operations (and, by symme-
try, read operations) across nodes 200 of the cluster, while
also leveling flash wear in the SSDs 260 of the cluster.

In response to the put operation, the extent store instance
may process the hash value 650 to perform an extent metadata
selection technique 800 that (i) selects an appropriate hash
table 850 (e.g., hash table 850q) from a set of hash tables
(illustratively in-core) within the extent store instance 720,
and (ii) extracts a hash table index 820 from the hash value
650 to index into the selected hash table and lookup a table
entry having an extent key 810 identifying a storage location
530 on SSD 260 for the extent. Accordingly, the extent store
layer may contain computer executable instructions executed
by the CPU 210 to perform operations that implement the
extent metadata selection technique 800. If a table entry with
a matching key is found, then the SSD location 530 mapped
from the extent key 810 is used to retrieve an existing extent
(not shown) from SSD. The existing extent is then compared
with the new extent 610 to determine whether their data is
identical. If the data is identical, the new extent 610 is already
stored on SSD 260 and a de-duplication opportunity (denoted
de-duplication 452) exists such that there is no need to write
another copy of the data. Accordingly, areference count in the
table entry for the existing extent is incremented and the
extent key 810 of the existing extent is passed to the appro-
priate volume layer instance for storage within an entry (de-
noted as volume metadata entry 446) of a dense tree metadata
structure 444 (e.g., dense tree 444a), such that the extent key
810 is associated an offset range 440 (e.g., offset range 440a)
of the volume 445.

However, if the data of the existing extent is not identical to
the data of the new extent 610, a collision occurs and a
deterministic algorithm is invoked to sequentially generate as
many new candidate extent keys mapping to the same bucket
as needed to either provide de-duplication 452 or to produce
an extent key that is not already stored within the extent store
instance. Notably, another hash table (e.g. hash table 850%)
may be selected by a new candidate extent key in accordance
with the extent metadata selection technique 800. In the event
that no de-duplication opportunity exists (i.e., the extent is not
already stored) the new extent 610 is compressed in accor-
dance with compression technique 454 and passed to the
RAID layer 360, which processes the new extent 610 for
storage on SSD 260 within one or more stripes 464 of RAID
group 466. The extent store instance may cooperate with the

US 9,256,549 B2

9

RAID layer 360 to identify a storage segment 460 (i.e., a
portion of the storage array 150) and a location on SSD 260
within the segment 460 in which to store the new extent 610.
Iustratively, the identified storage segment is a segment with
a large contiguous free space having, e.g., location 530 on
SSD 2605 for storing the extent 610.

In an embodiment, the RAID layer 360 then writes the
stripes 464 across the RAID group 466, illustratively as one or
more full write stripes 462. The RAID layer 360 may write a
series of stripes 464 of sufficient depth to reduce data reloca-
tion that may occur within flash-based SSDs 260 (i.e., flash
block management). The extent store instance then (i) loads
the SSD location 530 of the new extent 610 into the selected
hash table 850# (i.e., as selected by the new candidate extent
key), (ii) passes a new extent key (denoted as extent key 810)
to the appropriate volume layer instance for storage within an
entry (also denoted as volume metadata entry 446) of a dense
tree 444 managed by that volume layer instance, and (iii)
records a change to extent metadata of the selected hash table
in the extent store layer log 355. Illustratively, the volume
layer instance selects dense tree 444a spanning an offset
range 440a of the volume 445 that encompasses the offset
range of the write request. As noted, the volume 445 (e.g., an
offset space of the volume) is partitioned into multiple
regions (e.g., allotted as disjoint offset ranges); in an embodi-
ment, each region is represented by a dense tree 444. The
volume layer instance then inserts the volume metadata entry
446 into the dense tree 444a and records a change correspond-
ing to the volume metadata entry in the volume layer log 345.
Accordingly, the [/O (write) request is sufficiently stored on
SSD 260 of the cluster.

Read Path

FIG. 5 illustrates an I/O (e.g., read) path 500 of the storage
1/0 stack 300 for processing an /O request, e.g., a SCSI read
request 510. The read request 510 may be issued by host 120
and received at the protocol layer 320 of a node 200 in the
cluster 100. Illustratively, the protocol layer 320 processes the
read request by decoding 420 (e.g., parsing and extracting)
fields of therequest, e.g., LUN ID, LBA, and length (shown at
513), and uses the decoded results 522, e.g., LUN ID, offset,
and length, for the volume mapping technique 430. That is,
the protocol layer 320 may implement the volume mapping
technique 430 (described above) to translate the LUN ID and
LBA range (i.e., equivalent offset and length) of the read
request to an appropriate volume layer instance, i.e., volume
ID (volume 445), in the cluster 100 that is responsible for
managing volume metadata for the LBA (i.e., offset) range.
The protocol layer then passes the results 532 to the persis-
tence layer 330, which may search the write-back cache 380
to determine whether some or all of the read request can be
serviced from its cached data. If the entire request cannot be
serviced from the cached data, the persistence layer 330 may
then pass the remaining portion of the request including, e.g.,
the volume ID, offset and length, as parameters 534 to the
appropriate volume layer instance in accordance with the
function shipping mechanism (e.g., for RPC, for inter-node
communication) or the IPC mechanism (e.g., message
threads, for intra-node communication).

The volume layer instance may process the read request to
access a dense tree metadata structure 444 (e.g., dense tree
444aq) associated with a region (e.g., offset range 440q) of a
volume 445 that encompasses the requested offset range
(specified by parameters 534). The volume layer instance
may further process the read request to search for (lookup)
one or more volume metadata entries 446 of the dense tree

5

10

15

20

25

30

35

40

45

50

55

60

65

10

4444 to obtain one or more extent keys 810 associated with
one or more extents 610 within the requested offset range. In
an embodiment, each dense tree 444 may be embodied as
multiple levels of a search structure with possibly overlap-
ping offset range entries at each level. The various levels of
the dense tree may have volume metadata entries 446 for the
same offset, in which case, the higher level has the newer
entry and is used to service the read request. A top level of the
dense tree 444 is illustratively resident in-core and a page
cache 448 may be used to access lower levels of the tree. If the
requested range or portion thereof is not present in the top
level, a metadata page associated with an index entry at the
next lower tree level (not shown) is accessed. The metadata
page (i.e., in the page cache 448) at the next level is then
searched (e.g., a binary search) to find any overlapping
entries. This process is then iterated until one or more volume
metadata entries 446 of a level are found to ensure that the
extent key(s) 810 for the entire requested read range are
found. If no metadata entries exist for the entire or portions of
the requested read range, then the missing portion(s) are zero
filled.

Once found, each extent key 810 is processed by the vol-
ume layer 340 to, e.g., implement the bucket mapping tech-
nique 700 that translates the extent key to an appropriate
extent store instance 720 responsible for storing the requested
extent 610. Note that, in an embodiment, each extent key 810
may be substantially identical to the hash value 650 associ-
ated with the extent 610, i.e., the hash value as calculated
during the write request for the extent, such that the bucket
mapping 700 and extent metadata selection 800 techniques
may beused for both write and read path operations. Note also
that the extent key 810 may be derived from the hash value
650. The volume layer 340 may then pass the extent key 810
(i.e., the hash value from a previous write request for the
extent) to the appropriate extent store instance 720 (via an
extent store get operation), which performs an extent key-to-
SSD mapping to determine the location on SSD 260 for the
extent.

In response to the get operation, the extent store instance
may process the extent key 810 (i.e., hash value 650) to
perform the extent metadata selection technique 800 that (i)
selects an appropriate hash table 850 (e.g., hash table 8504a)
from a set of hash tables within the extent store instance 720,
and (ii) extracts a hash table index 820 from the extent key 810
(i.e., hash value 650) to index into the selected hash table and
lookup a table entry having a matching extent key 810 that
identifies a storage location 530 on SSD 260 for the extent
610. That is, the SSD location 530 mapped to the extent key
810 may be used to retrieve the existing extent (denoted as
extent 610) from SSD 260 (e.g., SSD 2605). The extent store
instance then cooperates with the RAID layer 360 to access
the extent on SSD 2604 and retrieve the data contents in
accordance with the read request. [llustratively, the RAID
layer 360 may read the extent in accordance with an extent
read operation 468 and pass the extent 610 to the extent store
instance. The extent store instance may then decompress the
extent 610 in accordance with a decompression technique
456, although it will be understood to those skilled in the art
that decompression can be performed at any layer of the
storage /O stack 300. The extent 610 may be stored in a
buffer (not shown) in memory 220 and a reference to that
buffer may be passed back through the layers of the storage
1/0 stack. The persistence layer may then load the extent into
a read cache 580 (or other staging mechanism) and may
extract appropriate read data 512 from the read cache 580 for
the L.BA range of the read request 510. Thereafter, the proto-

US 9,256,549 B2

11

col layer 320 may create a SCSI read response 514, including
the read data 512, and return the read response to the host 120.

Extent Hash Structure

FIG. 6 is a block diagram of the extent hashing technique
600 that may be advantageously used with one or more
embodiments described herein. As noted, the persistence
layer 330 may organize the write data of one or more write
requests into one or more extents 610, each of which is
embodied as a variable length block. The length of the extent
may vary between 1 byte and 64 KB (or larger) although, e.g.,
the extent is typically 4 KB or more in length. The extent 610
is illustratively a logically contiguous portion of a LUN (or
file) that is stored physically contiguous on SSD 260 within a
node of the cluster so that, e.g., it can be read from the SSD in
a single read operation. Thus, extents aggregated from mul-
tiple /O requests may include contiguous offset ranges
within any LUN. Accordingly, multiple LUNs (and/or files)
may share the same extent at different addresses (so long as
logically contiguous within each LUN), because the extent
generally does not maintain information with respect to its
presence in the storage pool of the cluster 100.

In an embodiment, a random technique, such as a hash
function 620 (e.g., an approximately uniform hash), may be
applied to each extent 610 to generate a hash value 650 that is
used to distribute (e.g., using the extent metadata selection
technique) the write data (i.e., extent data) and associated
metadata substantially evenly among the nodes 200 to enable
fine-grain scale out and de-duplication 452 in the cluster 100.
The hash computation is performed on the entire extent and
may be computed any time before the extent is passed to an
extent store instance. [llustratively, the resulting hash value
650 may be used fortwo generally similar tasks. The first task
is to distribute (spread) the extents and associated metadata
evenly within each extent store instances. Thus, the hash
value 650 is illustratively computed at the persistence layer
330, but may be computed at or before the volume layer 340
because the volume layer needs the hash value to determine
the extent store instance of a node that services the extent.

The hash computation is illustratively performed in accor-
dance with a secure hash algorithm, e.g., SHA-3 or Echo 256
cryptographic hash function, to generate a 256-bit hash func-
tion result (not shown). Alternatively, hash algorithms, such
as SipHash (secure 64-bit) or CityHash (non-crypto 64-bit)
may be used. A portion, e.g., the lower 6 bytes (48 bits), of the
256-bit hash function result may be illustratively trimmed,
e.g., in accordance with a trim technique 640, to generate a
48-bit hash value 650. It will be apparent to those skilled in
the art that the trimmed size of the hash value may be enlarged
as the storage capacity of the cluster increases. In an embodi-
ment, the trim technique 640 essentially truncates or severs
the 6-byte (48-bit) portion of the hash value 650 from the
32-byte hash function result. The resulting 6 bytes (48 bits) of
the hash value 650 are illustratively sufficient to enable the
extent store instance to find a representation of the location of
the extent 610 on SSD 260 via entries in the hash tables 850.
In addition, the hash value 650 illustratively enables its asso-
ciated metadata, e.g., extent metadata in entries of the hash
tables 850, to reside entirely in memory 220. However, a
wider hash value (i.e., consuming more memory 220) may be
used to improve the chances of performing de-duplication
452 of new extents without having to actually compare the
write data of previous extents stored on SSD. The hash value
650 may be used to perform address-like determinations
within portions of its hash space in accordance with various
techniques, such as bucket mapping 700 and extent metadata

10

15

20

25

30

35

40

45

50

55

60

65

12

selection 800 within the storage 1/O stack 300, to select the
appropriate hash table 8504 for the extent 610.

FIG. 7 is a block diagram of the bucket mapping technique
700 that may be advantageously used with one or more
embodiments described herein. As noted, the hash value 650
may be computed at the persistence layer 330 so as to enable
efficient distribution of the extents 610 and associated extent
metadata evenly throughout the nodes 200 of the cluster. In an
embodiment, the mapping technique divides (e.g., substan-
tially evenly) the hash space of the 48-bit hash value 650 (i.e.,
2*%) into buckets that, collectively, are representative of the
extents and associated extent metadata. A substantially equal
number of buckets is then assigned or mapped to each extent
store instance of the nodes in the cluster 100 to thereby
distribute ownership of the buckets, and thus the extents and
extent metadata, substantially evenly, i.e., approximately uni-
formly, across all the extent store instances 720 of the nodes
200. Notably, the buckets may be alternatively assigned (or
reassigned) by weighted distribution according to character-
istics of the nodes such as storage capacity and performance.

In an embodiment, the bucket mapping technique maps
buckets to extent store instances using a remainder computa-
tion 710 based on modulus arithmetic: the hash value divided
by (modulo) the number of buckets, e.g., [hash value] mod
[number of buckets]. Illustratively, the number of buckets
(i.e., divisors) is a prime, e.g., 65521 (the largest prime less
than 2'9), although those skilled in the art will recognize that
other divisors may be used in accordance with the embodi-
ments described herein. The results of the remainder compu-
tation may be organized as a data structure, such as a bucket
mapping table 730, having 65521 bucket number entries,
each of which maps to (references) an extent store instance.
Alternatively, a bucket mapping data structure in the cluster
database 244 may be used to associate a bucket (number) 725,
e.g. 0-65520, to an extent store instance or node 200 to
thereby map the corresponding bucket to that extent store
instance or node.

The buckets may be continually mapped to extent store
instances and, as new extents 610 are formed, they may be
assigned to the buckets. The mappings from bucket numbers
to extent store instances of the nodes are essentially arbitrary;
a requirement may be that the number of buckets served by
each extent store instance is proportional to the storage capac-
ity and processing bandwidth available in each node 200. The
buckets 725 may be distributed among the extent store
instances to thereby achieve a substantially even and balanced
level of capacity and bandwidth utilization across all of the
nodes in the cluster 100.

A new extent 610 may be subsequently formed at a node
and applied to the hash function 620 to generate a result (as
described above), which may be trimmed using technique
640 to generate the hash value 650 to select the extent store
instance for storing the new extent 610. The hash value 650
may then be processed by the remainder computation 710 that
divides the hash value by the number of buckets, e.g., [hash
value] mod [number of buckets], wherein the number of
buckets is illustratively a prime, e.g., 65521. The result of the
computation generates a bucket number associated with a
bucket that functions as an index into a selected entry of the
bucket mapping table 730 to identify an extent store instance
that serves the new extent associated with the hash value 650.
Alternatively, the bucket mapping data structure of the cluster
database 244 may be searched using the bucket number as a
key to identify an associated value, i.e., an extent store
instance or node 200, of a key-value pair. The hash value 650

US 9,256,549 B2

13

may thereafter be passed to the extent store instance to enable
selection of extent metadata used to identify the location 530
of the extent on SSD 260.

Cuckoo Hashing

The embodiments described herein are directed to the use
otf'hashing in a file system metadata arrangement that reduces
an amount of metadata stored in a memory of a node in a
cluster and that reduces the amount of metadata needed to
process an 1/O request at the node. Illustratively, the embodi-
ments are directed to cuckoo hashing and, in particular, to a
manner in which cuckoo hashing may be modified and
applied to construct the file system metadata arrangement. In
anembodiment, the file system metadata arrangement may be
illustratively configured as a key-value extent store embodied
as a data structure, e.g., a cuckoo hash table, wherein a value,
such as a hash table index, may be applied to the cuckoo hash
table to obtain a key, such as an extent key, configured to
reference a location of an extent on one or more storage
devices, such as SSDs. Thus, the cuckoo hash table embodies
extent metadata that describes the extent and, as such, may be
organized to associate a location on SSD with an index, i.e., a
value associated with the hash table index identifies the loca-
tion on SSD. Advantageously, the file system metadata
arrangement achieves a high degree of metadata compact-
ness, thus reducing read and write amplification as well as
memory requirements.

In an embodiment, storage and retrieval of key-value pairs
employ cuckoo hashing, i.e., the set of cuckoo hash tables,
using a portion of the hash value 650 as a hash table index
(i.e., indexing into the cuckoo hash table), which is illustra-
tively split in half. Each half of the hash table index may be
used as an index into each cuckoo hash table to determine a
potential entry for storing the other half of the hash table
index in the table. That is, one half of the hash table index may
be used as the index into the cuckoo hash table, while the
other half may be used as the value stored in the hash table.
Alternatively, the other half of the hash table index may be
used as the index, while the one half may be used as the stored
value. Thus, the same hash table index can be stored in the
cuckoo hash table in two different ways, i.e., either in an
upper half or lower half of the cuckoo hash table. This allows
higher population, i.e., load factor, in the hash table without
chaining, e.g., the use of linked lists, by accessing an entry
with the one half of'the hash table index as the index and, if the
entry is occupied, accessing another entry with the other half
of the hash table index as the index. Accordingly, cuckoo
hashing reduces an amount of metadata (i.e., the hash table
index) stored in the memory of the node as a result of a higher
load factor. If both entries are occupied, then one of the two
entries is chosen and the prior content of the entry may be
evicted and re-inserted into the cuckoo table at an alternate
location (i.e., alternate entry) using the prior content as an
alternate index to the hash table, i.e., not resolving to either of
the two entries. The hash table index, i.e., referencing the
chosen entry, may then be stored at the alternate location. If
the alternate location also is occupied, the prior content of the
alternate entry may also be evicted. This eviction process may
be repeated until an unoccupied entry is found.

However, as full capacity (i.e., load) of the hash table is
approached, a cycle effect may be realized wherein two or
more entries chain together through their present and alter-
nate hash table locations to form a complete cycle; if this
occurs, no new insertions can occur at any of these locations.
To eliminate this problem, the cuckoo hash table embodies a
set associative organization such that, for each entry that is

20

40

45

55

60

14

indexed by half of the hash table index, there is a plurality of
possible slots (i.e., a group of slots associated with the index)
into which the other half of the hash table index may be
inserted/stored, i.e., all of the slots are associated with the
indexing hash table index (i.e., the hash table index used to
index the group of slots), but each slot may include a different
other half of the hash table index. Generally, a free slot of the
plurality of possible slots may be found by linear search of the
plurality of slots for the non-indexing half of the hash table
index, i.e., if K1 indexes for the entry/slot, a search for K2 is
performed. Alternatively, the associative set may be sorted
permitting a more efficient search, e.g., a binary search, to be
used.

In an embodiment, the cuckoo hash table may be organized
with a 32-way set associativity, i.e., the hash table index
stored in the cuckoo hash table may be found in any of32 slots
ofthe hash table indexed at the one half of the hash table index
or any of 32 slots indexed by the other half of the hash table
index. If an adequately uniform hash function is used, the
distribution may be sufficiently balanced such that there may
be unoccupied slots for a given hash value. That is, as long as
the entire hash table is not full, one of the 64 potential slots for
the hash table index is likely to be unoccupied so that the hash
table index can be inserted into that slot. If all 64 slots are
occupied, it is likely that one of the 64 occupants can be
moved to an empty entry/slot without any further relocation.
Note that every time contents are moved from one entry/slot
to another in the hash tables, the corresponding hash table
index 820 may be logged to record changes to the hash table.
Advantageously, the 32-way set associativity may provide a
load factor greater than 98%, so that values inserted into the
hash table remain in the slots/entries and are not pushed out
by the cuckoo hashing until the table is substantially full. By
using the cuckoo hash, two possible entries for an extent key
in the hash table can be directly computed and the 64 slots
associated with the entries can be inspected, i.e., searched, to
find the extent key. [llustratively, entries of the cuckoo hash
table may be sized so that all 32 slots for the hash table index
fitin a cache line of the CPU 210 enabling a fast linear search
of the slots.

Hash Table Organization

FIG. 8a is a block diagram of a cuckoo hash table that may
be advantageously used with one or more embodiments
described herein. In an embodiment, the extent metadata
resides entirely in the memory 220 of each node 200 and is
embodied as a hash table 850a-» of a set of hash tables 860
configured to address locations of the SSD. Note that the
bucket mapping technique 700 ensures that the buckets
assigned to the extent store instances are substantially evenly
populated with extent metadata such that each bucket con-
tributes equally to the hash tables served by an extent store
instance, i.e., the bucket mapping technique 700 has an
approximately uniform distribution. The extent store instance
may use the hash value 650 to provide the extent metadata
selection technique 800. To that end, the contents of the 48-bit
(6 byte) hash value, i.e., the hash value 650, are illustratively
organized into the following fields: an 8-bit field used as an
index to select ahash table, i.e., one 0of 256 tables, from the set
otf'hash tables (“hash table selector” 804), an 8-bit field (“ex-
tra key bits”) 802, and two 16-bit fields used as indices to
entries 840a-b (i.e., group of slots) in the selected hash table
(“K2” 806 and “K1” 808). Each hash table 850 includes two
halves where each half is addressable by one of the 16-bit
indices (e.g., “K1” and “K2”), so that each table half may
include 65536 (i.e., 2'°) entries 840. Note, the hash table

US 9,256,549 B2

15

index 820 is determined from K1 and K2 depending on which
half of the hash table is indexed. Further, each entry 840a-5 is
a 32-way associative set of slots 830 having the key-value
pair. Accordingly, there are 2'°x32x2 (i.e., entriesxassocia-
tivityx2 table halves)=4 M (4,194,240) total entries/slots
(“slots”) per hash table and at least 256 tables, i.e., hash table
selector 804, per extent store instance, yielding a billion
(1,073,725,440 exactly) slots. Notably, the hash table set may
be further expanded into subsets selected based on a function
applied to the hash value 650 (e.g., computing a remainder of
the hash value 650 for a prime number as an index to a subset
of'the hash table set 860), an exemplary embodiment of which
is described in commonly owned U.S. patent application Ser.
No. 14/044,624 titled Extent Hash Structure for Storage Sys-
tem by Kimmel et el., filed on Oct. 2, 2013.

FIG. 8b1s a block diagram of a hash table slot 830 that may
be advantageously used with one or more embodiments
described herein. Illustratively, the slot is organized as a
10-byte (80-bit) value having the following fields: a 5-byte
(i.e., 40-bit) offset 831 indicating a location on SSD for an
extent “keyed” by the slot; a 1-byte (8-bit) length 832 indi-
cating a size of the extent; a reference count having at least
7-bits (“refcount” 834) indicating a number of metadata ref-
erences to the extent; a dirty bit 836 indicating whether the
slot has been changed, i.e., is “dirty”; the extra key bits 802
from the hash value 650 for the extent; and either “K1”* 808 or
“K2” 806 not used as the hash table index 820 to index to the
entry 840. Note that the length field 832 may represent a
number of sectors of a given size based on the geometry of the
SSD 260, e.g., 512 bytes or 520 bytes, such that a 1-byte
length may represent a range of 255x512 bytes=128K bytes.
Accordingly, an extent may vary from 512 bytes to 128K
bytes in 512 byte increments.

In an embodiment, combinations of sentinel values in one
or more fields of the slot 830 may be used to indicate a type of
extent, such as 1) a “hole” or deleted extent and ii) a “put” or
stored extent. For example, a refcount 834 of zero and offset
831 of zero may be used to indicate a deleted extent, whereas
arefcount 834 greater than zero (i.e., one) and offset 831 other
than zero may be used to indicate a stored extent. Compact-
ness of the slot fields benefits efficient use of memory as it is
desirable to maintain the hash tables in-core for fast lookup of
key-value pairs, i.e., locations of extents from hash keys. For
example, the previously calculated 1 billion slots may con-
sume 10 GB in-core, i.e., 10-bytes per slot, not including any
expansion (e.g., the expansion technique in an exemplary
embodiment in aforementioned U.S. patent application
Extent Hash Structure for Storage System multiplies the in-
core consumption by 3). Notably, each extent store instance
may support a LUN capacity of atleast 4 terabytes (TB) based
on a minimum 4 KB extent size (1 Bx4 KB per extent) to a
maximum of 384 TB based on a 128 KB extent size with hash
table expansion (1 Bx3 expansionx128 KB per extent).

Once a hash table 850a is selected, the extent store instance
may extract either K1 or K2 of the hash value 650 for use as
the hash table index 820 to index into the hash table (e.g.,
using K1 for the upper half of the table and K2 for the lower
half of the table) and select an appropriate entry 8404 config-
ured to store, inter alia, a portion of the extentkey 810, as well
as an identification of location on SSD. Notably, K1 and K2
are distinguished from each other using an implied high-order
bit that splits the cuckoo hash table into an upper address
space and a lower address space. Illustratively, the implied
high-order bit increases the address capability of K1 or K2
from 2'9 possible locations to 2'7 possible locations, where
the upper address space of the hash table is addressable by one
16-bit field (e.g., K1) of the hash value and a lower address

10

15

20

25

30

35

40

45

50

55

60

65

16

space of the hash table is addressable by the other 16-bit field
(e.g., K2). In an embodiment, the selection of which hash
table index (K1 or K2) to use to initially index into cuckoo
hash table is arbitrary. In the case of an insertion of an entry
(e.g., storing an extent) into the cuckoo hash table 850q, a
desired approach may be to choose whichever upper or lower
address space set is less occupied (after an exhaustive search
of'both sets 840a and 8405).

As noted, each cuckoo hash table has set-associative slots,
e.g., 32 slots per associative set. In an embodiment, there is no
ordering of the 32 slots within the associative set of an entry;
a linear search may be performed to find an empty slot for
inserting an extent key. Alternatively, the slots may be ordered
to accommodate a faster search, e.g., binary search, espe-
cially for larger associative sets (e.g., 128 way), which may
not fit into a CPU cache line. Similarly, once the associative
set of slots is identified, i.e., as entry 840, that could hold the
extent key, the linear search may be performed within the
slots to determine whether the key is present. The advantage
of the cuckoo hash table is that there are exactly 2 entries
(each having 32 slots) in the entire cluster 100 at which a
given extent key value can reside. Once the entry is indexed
using K1 or K2 along with the implied high-order bit, there
are 32 slots within the entry 840 to search.

In an embodiment, the number of slots per entry 840 is
illustratively chosen as 32, because all 32 slots can fit into a
cache line of, for example, an Intel processor (i.e., 32xsize of
the hash table index 820 in the slot). In other words, 16 bits or
2 bytes (K1 or K2) times the 32 slots equals 64 bytes, which
is the size of an illustrative cache line. Once an operation
fetches and manipulates a cache line, the cache line remains
cached until it is evicted. For a linear search of the cached
slots 830, no further fetch from memory may be required, thus
avoiding any eviction of previously cached slots for the entry
840. [llustratively, the size of the set (i.e., 32 slots) is arbitrary
and chosen so as to fit in the cache line. Without changing any
of'the algorithms for accessing a given set, i.e., entry 840, the
set size could be changed to an arbitrary integer and even vary
per set. The information constituting the remaining 8 bytes of
anentry (including the offset 831 which constitutes part of the
extent location 530 on SSD) may be stored out-of-line, i.e.,
not cached during the search of slots, in another portion of the
hash table 850. It should be noted that the hash table 850 may
be stored in column major order in memory (e.g., defining the
hash table in the “C” programming language as a structure
including the fields of the slot 830 as separate arrays). Thus,
if it is desirable to access the K1 or K2 16-bit field, only one
cache line access may be required.

To ensure fast and efficient performance, the hash table 850
may be further organized to require only one disk (SSD)
access for every extent key obtained from the extent store
instance. This is possible because the extent store layer 350 of
the storage 1/O stack 300 does not have the overhead of a
directory hierarchy organization and, therefore, when an /O
request is forwarded to the extent store instance, a fast lookup
in memory 220 may occur to the appropriate in-core hash
table 850 and then the SSD(s) are accessed just once. Thus,
there may be only one SSD access per /O (read or write)
operation, thereby improving read and/or write amplification.

FIG. 9 is a block diagram of an extent key reconstruction
technique that may be advantageously used with one or more
embodiments described herein. Extent key reconstruction
aids efficient reassignment (i.e., migration) of a bucket (num-
ber) 725 (e.g., via the bucket mapping table 730) from a first
extent store instance to a second extent store instance. For
example, hash tables 850 of the first extent store instance may
be searched for slots associated with the bucket to be reas-

US 9,256,549 B2

17

signed, and those slots may then be re-inserted into the hash
tables of the second extent store instance using extent keys
reconstructed from each respective slot found from the search
of the first extent store instance.

Tlustratively, reconstruction of an extent key is based, in
part, on the contents of a hash table slot 830q,5 to thereby
permit storage in the slot of only those bits of the hash value
650 required to identify, i.e., search, for the slot and recon-
struct the hash value 650 (i.e., the substantially identical
extent key 810). In an embodiment, the extent store layer 350
contains computer executable instructions executed by the
CPU 210 to perform operations that implement the extent key
reconstruction technique described herein. According to the
technique, once the slot 8304, 5 is found, the 16-bit field (e.g.
K1 or K2) can be discarded (is not stored) because the extent
store layer (instance) can recreate the 16-bit field implicitly
from the entry 840a,5 in the upper address space portion 902
or lower address space portion 904 of the hash table 850. That
is, use of bits from the hash value for a portion of the indexing
enables inferential determination of the bits instead of having
to store them. In addition, the 8 bits of hash table selector 804
do not need to be stored and can be recreated implicitly from
the accessed hash table itself, i.e., determining a slot 830a,b
implies having indexed into the appropriate hash table. Thus,
only 2 bytes of the hash value 650 bits not implied by the
index (i.e., K1 or K2) and 1 byte of extra key bits 802 need be
stored in the slot 830a,b. Specifically, in order to reproduce
the 6-byte (48-bit) hash value 650 (i.e., the extent key 810), 2
bytes of cuckoo indexing are inferred (not stored) by the entry
in the table, 2 bytes of cuckoo indexing are stored in memory,
one byte of the hash value is inferred (not stored) by the hash
table selector of the hash table set, and finally one byte is
stored in memory as extra bits. As a result, it is only necessary
to store 3 bytes or 24 bits of hash value 650 (i.e., K1 or K2,
plus the extra key bits 802) in the slot 8304, 5 of the hash table
in order to reconstruct the hash value, i.e., the extent key 810.
In an embodiment, the extra key bits 802 may be used to
realize sufficient uniqueness in the event of a collision.

Hash Table Collision

FIG. 10 is a block diagram of a hash collision technique
that may be advantageously used with one or more embodi-
ments described herein. Illustratively, the hash collision tech-
nique employs a hash collision computation 1002 to deter-
mine a unique candidate extent key 811 (having a candidate
hash table index 82054) in the event of a collision, i.e., the hash
table index 8204 collides with a slot 830a matching the com-
bination of the extra key bits 802 and either K1 or K2, which-
ever is found in that field of the slot. As used herein, a collision
arises when an entry is properly indexed by the hash table
index 820a of the 48-bit hash value 650 into the hash table
850a, but a comparison reveals that a different extent already
has allocated the candidate extent key, i.e., the slot 8304 is
occupied by a different extent with extra key bits 802 match-
ing those of the candidate extent key. It should be noted that
proper indexing into the hash table involves indexing into
both the upper address space portion 902 and the lower
address space portion 904 of the hash table 850 (using, e.g.,
K1 and K2 respectively), as an extent using the candidate
extent key may already reside in either portion. Illustratively,
the collision occurs as a result of a failed de-duplication
opportunity and the need to choose a new entry indexed by a
new hash table index (i.e., the candidate hash table index
8205), which is determined from a new hash value (i.e., the
candidate extent key 811). That is, the hash value 650 is
insufficient and the candidate hash table index 8205 may be

10

15

20

25

30

35

40

45

50

55

60

65

18

generated. The new entry 8406 (and new slot 830%) in the
hash table set 860 may be determined from the candidate
extent key 811 computed from the hash value 650 such that
the candidate extent key 811 resolves to a same (i.e., single)
bucket number as that for the hash value 650. That is, both the
candidate extent key 811 and the hash value 650 resolve to the
same bucket number, while also resolving to different entries
840a,b in the hash table set 860. Note, resolving to a same
bucket number also resolves to the same extent store instance
(i.e., via bucket mapping table using the bucket number).

In an embodiment, the candidate extent key 811 may be
computed from the hash value 650 using the deterministic
algorithm, i.e., the hash collision computation 1002, which
illustratively adds the large prime, e.g., 66521, to the hash
value, thereby resolving to the same bucket. Alternatively, a
sub-string (i.e., sub-set of bits) of the hash value 650 may be
used to compute the candidate extent key 811. In an embodi-
ment, the sub-string may be formed from low-order bits of the
hash value 650. Further, the sub-string may be selected so that
a sufficiently large number of alternate entries may be com-
puted using the hash collision technique. [llustratively, the
extent store layer 350 contains computer executable instruc-
tions executed by the CPU 210 to perform operations that
implement the hash collision technique described herein.

In an embodiment, the extent key 810 may be substantially
identical to the 48-bit hash value 650, except in a situation
where the large prime number is added to the hash value to
resolve a de-duplication collision. In that situation, the 48-bit
hash value may be altered to generate the candidate extent key
811 and hash table index 8205. As noted, the hash table index
is the mechanism for accessing an entry 840 of the hash table
to retrieve the extent key. Thereafter, the retrieved extent key
810 is needed to determine a location on SSD for the extent,
i.e., retrieve a slot in the hash table set having the location for
the extent.

Tustratively, a collision is different from searching for a
slot into which to insert information into the hash table, i.e., a
fill of a cuckoo hash table entry. If it is determined that all 64
slots inthe 2 entry associative sets of the cuckoo hash table are
full without any extent key match, space can be freed in one of
the 2 associative sets by a cuckoo eviction process. In an
embodiment, the cuckoo eviction process may relocate the
content of any one of the 64 slots of the associative sets to an
alternative entry in the cuckoo hash table using the alternate
hash table index of the entry, i.e., the entry’s K1 or K2, as the
index into either the upper or lower half of the table.

In the event of a collision, a typical solution may be to
randomly choose a new hash value (i.e., candidate extent key
811). However, it may be desirable to ensure that de-duplica-
tion may be invoked when distributing or re-distributing
buckets throughout the cluster. When a collision is resolved
the candidate extent key 811 should be within the same
bucket; otherwise a resulting extent key may resolve to a
different extent store instance having different hash tables.
That is, the candidate extent key 811 should resolve to the
same bucket number 725, i.e., to the same extent store
instance, based on the bucket mapping table 730. Accord-
ingly, the hash collision computation 1002 may add the prime
number associated with the number of buckets to the hash
value (or a sub-string of the hash value) to obtain the candi-
date hash table index 8205, so that the remainder computation
710 used to determine the bucket number 725 yields the same
bucket. It will be understood by persons of skill in the art that
suitable carry overflow handling (i.e., resolution to the same
bucket number) may be necessary when the hash collision
technique operates on the sub-string of the hash value or the
hash value. For example, merely choosing a hash collision

US 9,256,549 B2

19

computation such as K1+1 may work until the point at which
the cluster grows and all extent keys (indexes) and buckets are
redistributed. At that point, there is no guarantee that K1+1
will correctly index into the particular bucket (or even the
particular extent store instance) associated with the hash
table.

As noted, the bucket-to-extent store instance mapping
involves dividing the hash value by a large prime number
(65521) to arrive at a bucket number 725. In an embodiment,
the deterministic algorithm (i.e., the hash collision computa-
tion 1002) may add the large prime number (65521) to a
sub-string of the hash value, e.g., the hash table index 820« (in
the event of a collision) to create new indices K3 and K4, i.e.,
the candidate hash table index 8205. In an alternative embodi-
ment, the collision technique may operate on the lower
40-bits of the hash value (i.e., sub-string) so that the candidate
hash table index references the same hash table (i.e., the hash
table selector 804 field is frozen). Should a collision occur
again, i.e., a collision of the candidate hash table index 8205,
the process may be continued by adding the large prime
number until a unique candidate extent key 811 is found for
the extent, thus ensuring the candidate hash table index 8205
will reference (fall into) the same bucket (and thus the same
node) whether the cluster grows or shrinks. Although the
deterministic algorithm ensures that the candidate extent key
811 will resolve to the same bucket and same node 200 of the
cluster, when hash table expansion is used (such as disclosed
in an exemplary embodiment in the aforementioned U.S.
patent application Extent Hash Structure for Storage Sys-
tem), the addition of the large prime may not resolve to the
same hash table 850a within the same extent store instance of
the cluster.

Advantageously, the file system metadata arrangement
embodied as the cuckoo hash table described herein may be
optimized for high performance and may be compactly orga-
nized to enable extent metadata describing a large LUN to
reside in memory. That is, the file system metadata arrange-
ment may be optimized such that hash values may be quickly
directed to the appropriate cuckoo hash table and efficiently
stored/retrieved in/from a hash table entry/slot having a high
degree of table load. In addition, the file system metadata
arrangement may be organized to reduce the amount of meta-
data stored in each entry/slot of the cuckoo hash table, yet still
enable reconstruction of a hash value/extent key, in accor-
dance with the extent key reconstruction technique, to aid
migration of buckets between extent store instances. More-
over, hash collisions may be resolved within the same set of
cuckoo hash tables using the hash collision computation that
resolves to the same set of tables, thus assuring that collisions
involving a given deterministic set of candidate extent keys
resolve within the same extent store instance regardless of any
redistribution of buckets among extent store instances within
the cluster.

The foregoing description has been directed to specific
embodiments. It will be apparent, however, that other varia-
tions and modifications may be made to the described
embodiments, with the attainment of some or all of their
advantages. For instance, it is expressly contemplated that the
components and/or elements described herein can be imple-
mented as software encoded on a tangible (non-transitory)
computer-readable medium (e.g., disks and/or CDs) having
program instructions executing on a computer, hardware,
firmware, or a combination thereof. Accordingly this descrip-
tion is to be taken only by way of example and not to other-
wise limit the scope of the embodiments herein. Therefore, it
is the object of the appended claims to cover all such varia-

25

30

35

40

45

20

tions and modifications as come within the true spirit and
scope of the embodiments herein.
What is claimed is:
1. A method comprising:
storing a set of hash tables embodying metadata including
an extent key associated with a storage location on stor-
age devices of a cluster for write data of one or more
write requests organized into an extent, each hash table
having a plurality of entries, wherein each entry includes
a plurality of slots;

recreating, by a node of the cluster, a first field of the extent
key implicitly from an entry in a first address space
portion of ahash table, the first field having first bits used
as a first hash table index to address the first address
space portion of the hash table to select the entry and to
determine a slot;

storing a second field of the extent key in the slot, the

second field having second bits used as a second hash
table index to address a second address space portion of
the hash table;

storing a third field of the extent key in the slot, the third

field having third bits used to realize uniqueness in an
event of a collision in the hash table; and

recreating, by the node of the cluster, a fourth field of the

extent key implicitly from the hash table of the set of
hash tables, the fourth field having fourth bits used as a
hash table selector to select the hash table from the set of
hash tables, wherein the first through fourth fields of the
extent key are separate fields.

2. The method of claim 1 wherein only bits of a hash value
required to identify the slot and reconstruct the extent key are
stored in the slot.

3. The method of claim 1 further comprising:

executing, by the node of the cluster, one or more extent

store instances.

4. The method of claim 3 wherein the recreating the first
field, storing the second field, storing the third field and rec-
reating the fourth field are performed in migration of buckets
between the extent store instances.

5. The method of claim 1 wherein the first bits of the first
field and the fourth bits of the fourth field are recreated with-
out storage in the slot to reduce an amount of the metadata
stored in the slot.

6. The method of claim 5 wherein use of the first bits in the
first field of the extent key for hash table indexing enables
inferential determination of the first bits.

7. The method of claim 5 wherein determination of the slot
includes indexing into the hash table.

8. A non-transitory computer readable medium including
program instructions for execution on one or more processors
of a distributed storage architecture, the program instructions
when executed operable to:

store a set of hash tables embodying metadata including an

extent key associated with a storage location on storage
devices for write data of one or more write requests
organized into an extent, each hash table having a plu-
rality of entries, wherein each entry includes a plurality
of slots;

recreate a first field of the extent key implicitly from an

entry in a first address space portion of a hash table, the
first field having first bits used as a first hash table index
to address the first address space portion of the hash table
to select the entry and to determine a slot;

store a second field of the extent key in the slot, the second

field having second bits used as a second hash table
index to address a second address space portion of the
hash table;

US 9,256,549 B2

21

store a third field of the extent key in the slot, the third field
having third bits used to realize uniqueness in an event of
a collision in the hash table; and

recreate a fourth field of the extent key implicitly from the
hash table ofthe set of hash tables, the fourth field having
fourth bits used as a hash table selector to select the hash
table from the set of hash tables, wherein the first
through fourth fields of the extent key are separate fields.

9. The non-transitory computer readable medium of claim

8 wherein only bits of a hash value required to identify the slot
and reconstruct the extent key are stored in the slot.

10. The non-transitory computer readable medium of claim

8 wherein the program instructions include program instruc-
tions for one or more extent store instances, and the program
instruction operable to recreate the first field, store the second
field, store the third field and recreate the fourth field are
executed in migration of buckets between the extent store
instances.

11. The non-transitory computer readable medium of claim

8 wherein the first bits of the first field and the fourth bits of
the fourth field are recreated without storage in the slot to
reduce an amount of the metadata stored in the slot.

12. The non-transitory computer readable medium of claim

11 wherein use of the first bits in the first field of the extent key
for hash table indexing enables inferential determination of
the first bits.

13. The non-transitory computer readable medium of claim

11 wherein determination of the slot includes indexing into
the hash table.

14. A system comprising:

a central processing unit (CPU) of a node of a cluster
having a plurality of nodes, each node coupled to a
plurality of storage devices; and

amemory coupled to the CPU and configured to store a set
of'hash tables embodying metadata including an extent
key associated with a storage location on the storage
devices for write data of one or more write requests
organized into an extent, each hash table having a plu-
rality of entries, wherein each entry includes a plurality
of'slots, the memory further configured to store a storage
input/output (I/O) stack having a plurality of layers

20

25

30

35

40

22

implemented as one or more instances executable by the
CPU, the one or more instances when executed operable
to implement an extent key reconstruction technique to:

recreate a first field of the extent key implicitly from an
entry in a first address space portion of a hash table, the
first field having first bits used as a first hash table index
to address the first address space portion of the hash table
to select the entry and to determine a slot;

store a second field of the extent key in the slot, the second

field having second bits used as a second hash table
index to address a second address space portion of the
hash table;
store a third field of the extent key in the slot, the third field
having third bits used to realize uniqueness in an event of
a collision in the hash table; and

recreate a fourth field of the extent key implicitly from the
hash table ofthe set ofhash tables, the fourth field having
fourth bits used as a hash table selector to select the hash
table from the set of hash tables, wherein the first
through fourth fields of the extent key are separate fields.

15. The system of claim 14 wherein the extent key recon-
struction technique enables reconstruction of the extent key
based on contents of the slot to permit storage in the slot of
only bits of a hash value required to identity the slot and
reconstruct the extent key.

16. The system of claim 14 wherein the one or more
instances executable by the CPU includes one or more extent
store instances.

17. The system of claim 16 wherein the extent key recon-
struction technique is performed in migration of buckets
between the extent store instances within the cluster.

18. The system of claim 14 wherein the first bits of the first
field and the fourth bits of the fourth field are recreated with-
out storage in the slot to reduce an amount of the metadata
stored in the slot.

19. The system of claim 18 wherein use of the first bits in
the first field of the extent key for hash table indexing enables
inferential determination of the first bits.

20. The system of claim 18 wherein the determination of
the slot includes indexing into the hash table.

#* #* #* #* #*

